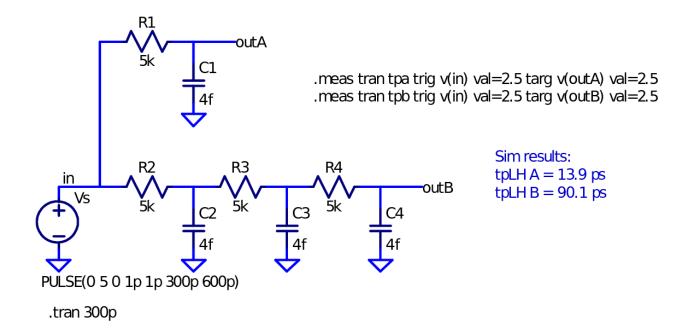
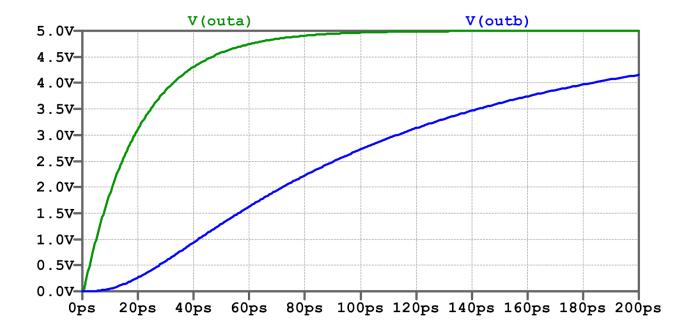

RC network responses


Calculations

- Find the propagation delay **tpdr** (in ECE 340 this was named **tpLH**) of Figure (a) using the circuit equations.
- Find the propagation delay **tpdr** of Figure (b) by using a similar technique as book section 4.3.4 and equation (4.13) to approximate as a single time constant system. This is the Elmore delay. There will still be a (ln2) factor in your math, we are not dropping it yet like the book's equation (4.9).


Simulations

Simulate the transient response of the two networks using LTspice. Be sure the input waveform's rise time is less than 1/10th of the output's rise time.

- Find the propagation delay **tplH** of Figure (a). This should be exactly the same as your calculated value.
- Find the propagation delay **tplH** of Figure (b).
 - o Compare this to your Elmore-estimated value.
 - Do you think it will always be an over/under estimate?

tpa=1.38724e-011 FROM 5e-013 TO 1.43724e-011 tpb=9.00547e-011 FROM 5e-013 TO 9.05547e-011

RC network delays

Find tPLH of this circuit,

Vont
$$(t) = (5v) \left[1 - \exp\left(\frac{-t}{R \cdot C}\right)\right]$$

Jelay is 50% of input to 50% of output transition.

$$\frac{5}{2} = (5V) \left[1 - \exp\left(\frac{-t}{Rc}\right) \right]$$

$$\frac{1}{2}$$
 - $| = -\exp\left(\frac{-t}{Rc}\right)$

$$\exp\left(\frac{-t}{Rc}\right) = \frac{1}{2}$$

$$\frac{-t}{RC} = \ln(\frac{1}{2})$$

$$-t = RC \cdot ln \frac{1}{2} \cdot \left(ln(1) - ln(2) \right)$$

Estimate EPLH by approximating as a single time constant "Elmore style"

Simulations

whether this estimate is high/low depends on the distribution of the Rand C values along the "line"/path.