

ECE 429 - Final Project Report

Numerically Controlled Oscillator (NCO)

Matthew Janke, Evan Rose, Dan Taylor, Nick Ackerman, and Zhengtai Zhong

May 7th, 2016

I have neither given or received nor have I tolerated others’ use of unauthorized aid.

NCO datasheet 1

Table of Contents

1. Functional Description pg 1
2. Block Diagram pg 2
3. Signal Descriptions pg 3
4. NCO Specifications pg 4
5. Schematic Simulations pg 5
6. Layout pg 12
7. Post-Layout Simulations pg 15
8. Project Commentary pg 19

Functional Description

The Numerically Controlled Oscillator is a device that outputs an approximate 50% duty cycle

square wave at a frequency that is a percentage of the clock frequency. The frequency of the

square wave is determined by an 8-bit frequency control word (fcw[7:0]). The frequency control

word along with the input clock signal are the device inputs and the one bit output square wave

is the only device output.

The Numerically Controlled Oscillator (NCO) design uses two basic components; an 8 bit full

adder and an 8 bit parallel input/parallel output register composed of D flip flops. Assuming

some frequency control word, the 8 bit adder will add the fcw with the current contents of the 8

bit register. On the next rising clock edge, the 8 bit register will store the 8 bit sum from the

adder. Upon the following rising edge, the 8 bit adder will add the fcw with the sum currently

stored in the register creating a new sum that will be added with the fcw on the following rising

edge. The NCO effectively increments to 256 (28) by the fcw. The most significant bit of the 8 bit

register is used as the output for the NCO.

The frequency of the output square wave can be determined using the following formula:

f
OUT = (fcw/256)*f

CLK

Figure 1: NCO diagram

NCO datasheet 2

Block Diagram

Figure 2: Block Diagram for NCO

The figure above is a high level block diagram of the NCO. The component on the left side is the

8 bit full adder and the component on the right is the 8 bit PIPO register. The fcw and clk inputs

are labeled above as well as the msb output. A more thorough signal description can be found in

the Signal Description Table (Table 1). As evident in the above schematic, the sum of the adder is

always re added with the fcw to achieve the desired incrementing effect.

NCO datasheet 3

Signal Descriptions

Table 1: Signal Descriptions

NCO datasheet 4

NCO Specifications

Table 2: NCO Specifications

The following specifications provided for the NCO were successfully met. The NCO shall use an

8-bit frequency control word (fcw). The NCO shall properly operate with a minimum clock

frequency of 20 MHz. As described in the functional description, the NCO operates with an 8-bit

input frequency control word. During our specification testing, we used a value of 0x10 (0001

0000) and 0xEF (0111 1111). The maximum and minimum frequency values are also detailed

above and prove our design meet the minimum frequency criteria.

Figure 3: Timing Diagram Example

NCO datasheet 5

Schematic Simulations

Figure 4: 8 Bit PIPO Register - Schematic

Figure 5: Data flip flop (DFF) - Schematic

Figure 6: Transmission gate - Schematic

NCO datasheet 6

Figure 7: 8 bit ripple adder - Schematic

Figure 8: Full ripple adder - Schematic

NCO datasheet 7

Figure 9: AND Gate - Schematic

Figure 10: OR Gate - Schematic

NCO datasheet 8

Figure 11: XOR Gate - Schematic

Figure 12: Inverter gate - Schematic

NCO datasheet 9

Figure 13: Clock to Q delay for NCO: 0.385 ns - Schematic

Figure 14: Waveform verifying 20Mhz functionality - Schematic

NCO datasheet 10

Figure 15: Waveform verifying 400 MHz functionality - Schematic

Figure 16: Waveform verifying 8 Bit Register functionality - Schematic

NCO datasheet 11

Figure 17: 8 Bit Adder propagation delay: 1.34 ns - Schematic

Figure 18: 8 Bit Register Setup time: 30 ps - Schematic

NCO datasheet 12

Layout

Total Die Size Area: 0.2597 um2
Dimensions of minimum sized rectangle: 1951.1 x 1478.75 with 300.0 nm scale

We designed the layouts hierarchically so we started at the transistor level. It was essential to have
the transistor level schematics so that we could determine where the drains, sources, and gates should
be positioned in the layouts in order to optimize die area as well as the number of transistors used.
For example with the AND gate, the two NMOS transistors in series became one transistor in the
layout by connecting the n-active regions (along with the source connected to ground and the drain
connected to output). For the PMOS transistors in parallel, the n well regions were connected by a
contact between them and then having the sources of each transistor go to Vcc and the center
contact in the n well region as the output. The outputs of the PMOS and NMOS transistor networks
were connected to the same node. Again, this design was used to minimize die area and optimize
transistor usage.

Once the gates were built, we were able to copy the existing designs into other layouts and easily
build more complex designs including the data flip flop (DFF) and full adder. For both the adder and
DFF, we first built a single bit slice and then copied the functional instance eight times to create the
full layout. During the layout design phase, we set rules for each metal layer in order to simplify the
design and prevent any arc crossings. For any given layer, all arcs contained ran parallel with each
other, and in any adjacent layer (above or below), the arcs ran perpendicular. Again, this reduced any
arc errors and simplified the design process.

We also ensured that all nodes were consistently labeled the same on every schematic to ensure
seamless functionality.

Regarding the timing specifications of the layout components, see the specification table (Table 2)
for details.

NCO datasheet 13

Figure 19: NCO Layout

Figure 20: 8 Bit Adder

Figure 21: 8 Bit Register

NCO datasheet 14

Figure 22: Full Ripple Adder

Figure 23: DFF layout

NCO datasheet 15

Post-Layout Simulation

Figure 24: Clock to Q delay NCO: 1.9ns - Layout

Figure 25: Minimum Setup time for register: 30.7ps - Layout

NCO datasheet 16

Figure 26: Waveform verifying functionality at 20MHz - Layout

Figure 27: Waveform verifying functionality at 500 MHz - Layout

NCO datasheet 17

Figure 28: 8 Bit Adder propagation delay: 10.2 ns - Layout

Figure 29: 8 bit Register Clk to Q: 0.55ns - Layout

The major timing differences between the Layout and Schematic simulations were seen in the

Clock to Q delay for the NCO as well as the propagation delay through the 8 Bit Adder. The

Clock to Q delay for the Layout was approximately 1.9 ns (Figure 24) while the Clock to Q delay

for the Schematic was only 0.4 ns (Figure 13). This is about an 80% increase from the Schematic

to Layout delay.

NCO datasheet 18

Additionally, we discovered a significant timing difference in the propagation delay through the

8 Bit Adder. For the Schematic, we measured a delay of 1.34 ns (Figure 17) while for the Layout,

we measured a delay of 10.2 ns (Figure 28). This is an increase of almost 660%. We attributed

all of the timing differences observed to parasitic capacitances present in the Layout design.

Project Commentary

The most difficult part of this project was designing in Electric. The computer software did not

always cooperate and syncing up various libraries and designs proved to be troublesome. We

had multiple instances where our layout design successfully NCO’d and then we would retest the

design on a later date and Electric would tell us we had lots of errors. We never really

determined the source of these issues. We solved them by opening and closing Electric and re

opening the relevant libraries and eventually things would fix themselves.

The most time consuming portion of the project was verifying the functionality of the 8 bit adder

as well as the layouts. There are so many different places where mistakes could be made that it

was a time consuming process to make sure everything was perfect. Especially with the adder,

we had to analyze waveforms with 25 different inputs and outputs and there was never a

convenient method of testing (none of us knew Python). The layouts also took a considerable

amount of time because Electric has many rules and specifications and it is not easy or

convenient making sure every rule is met. We also encountered many small errors in the layouts

where we thought things worked for a particular case and then would test another and

encounter issues. Overall, we found being extremely attentive and flogging every aspect of our

design with testing as the most effective method for ensuring functionality.

When moving to the layout from the schematic, we didn’t have to change much. We began with

the layouts for the basic logic gates, transmission gates, the full adder, and then worked our way

up to the 8 bit adder and register.

Regarding the work breakdown, Dan Taylor and Zhengtai Zhong initially worked on the

registers and layouts and Matt Janke, Evan Rose, and Nick Ackerman did most of the initial

work with the adders. However, once the project reached the final stages of testing, all group

members worked collaboratively to troubleshoot and debug. Additionally, Matt Janke took the

lead on compiling the report and was supported by Zhentai Zhong and Nick Ackerman with

measuring the timing specifications of the NCO while Dan Taylor and Evan Rose worked

extensively on finalizing the layout design.

NCO datasheet 19

The next time we have a large group project, we would first determine exactly what level of

performance was needed before jumping into the design phase. Without doing any baseline

tests, we initially decided a carry-lookahead adder would be best however, after extensive issues

troubleshooting the design, we switched to a ripple adder which proved much easier to build. If

we were to do this again, we would be smarter in our brainstorming and not make our lives any

harder than they need to be.

