ECE 499: Syllabus

Independent Study: Integrated Circuit Design

Table of Contents

- 1. Information
- 2. Goals
 - 2.1. G-FAB: Fabrication
 - 2.2. G-LOGIC: Digital logic design
 - 2.3. G-SIM: Simulation
 - 2.4. G-FLOW: Design flow
 - 2.5. G-PROJ: Project tapeout
- 3. Topics
- 4. Assessment
- 5. Resources

Spring 2022

1. Information

Credits	3 Credits
Prerequisites	ECE 221, ECE 340, and instructor permission.
Instructor	Dr. Dan White

It is helpful to also be familiar with the topics of ECE 222 and ECE 424.

Lower-credit versions of this *independent study* are a subset of the Goals and Objectives with proportionally fewer deliverables.

2. Goals

The following are the high-level Goals, the complete Goals and Objectives are found at Goals.

2.1. G-FAB: Fabrication

Learn the fundamentals of the fabrication and physical design of integrated circuits.

2.2. G-LOGIC: Digital logic design

Design combinational and sequential digital logic (integrated) circuits.

2.3. G-SIM: Simulation

Simulate and characterize combinational and sequential circuits at the transistor and structural levels.

2.4. G-FLOW: Design flow

Use hierarchical tools and techniques to manage design complexity.

Bottom-up

Transistors to macro cell libraries and process design kit (PDK)

Top-town

RTL-to-GDSII using <u>OpenLane</u> (https://openlane.readthedocs.io).

2.5. G-PROJ: Project tapeout

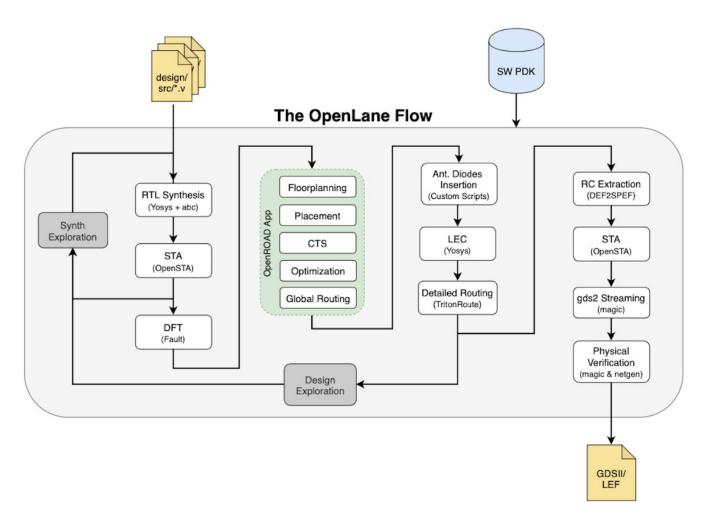
Create a small project suitable for submission to the Efabless Open MPW Shuttle Program.

Obtain practical experience with each stage of the ASIC design flow.

3. Topics

- Review of MOSFET physics
- CMOS fabrication processes

Combinational logic design styles


- Static CMOS
- Ratioed
- CVSL
- Dynamic
- Pass transistor

Sequential circuits

- Timing
- Latches
- Flip-Flops
- DFF in detail
 - setup and hold constraints
 - internal delays

Topics

- Clock domains and synchronization
 - Metastability
- Delay
 - RC model
 - Elmore
 - Logical effort
- Power
 - Dynamic
 - Static
 - Energy-delay optimization
 - Low power techniques
- Interconnect
 - Layout parasitics
 - Delay
- Simulation using *SPICE (LTspice and Ngspice)
- Transistor models
- Parametric variation
- Scripted measurements
- Synthesis
- Static timing analysis
- Floorplanning
- Placement
 - o I/O
 - Power distribution network
 - Clock tree distribution
- Routing
- Parasitic extraction
- Post-layout simulation
- DRC
- LVS
- GDSII tapeout

See also OpenLane Design Stages (https://openlane.readthedocs.io/en/latest/#openlane-design-stages)

4. Assessment

As the semester progresses, the student will assemble a portfolio of work. That work provides tangible evidence of reaching objectives that support the course's goals found in § 2, "Goals". Defined objectives are listed in this document with "**OBJ-name**" tags.

An Objective includes one or more Tasks

Each Objective is met by documenting the following

- Objective name and description.
- Link to associated Goal(s).
- Link to associated Topic(s).
- Report logging the Tasks completed
 - Summary notes, simulation inputs and results, analyses, graphics, code, etc.
 - Date stamps (YYYY-MM-DD format)

	The Tasks in an Objective do not necessarily need to be done sequentially as a group. They may be interleaved in time with tasks from other objectives as part of the learning process.
6	A rule-of-thumb: The tasks of an objective are equivalent to moderate-sized traditional homework problems. In fact, some objectives are appropriately set in the form of end-of-chapter exercises.
	TODO Example: A set of 3-4 end-of-chapter exercises
Specific	simple, sensible, significant
Measurable meaningful, motivating	
Achievable	agreed, attainable
Relevant	reasonable, realistic and resourced, results-based
Time-bound	d time-based, time limited, time/cost limited, timely, time-sensitive

The course letter grade is proportional to the number of objectives met.

5. Resources

Textbook

Neil Weste and David Harris, *CMOS VLSI Design: A Circuits and Systems Perspective, 4th Edition.* 2011 Pearson

Slack

#chipdesign channel at (valpo-engr.slack.com (https://valpo-engr.slack.com)). Valpo Engr Slack Invite link
(https://join.slack.com/t/valpo-engr/shared_invite/zt-9z5f0c9h-1v9~z0jqibVCwylmh\~_zgA), then join the #chipdesign
channel.

Last updated 2022-01-04 06:16:04 UTC